68 research outputs found

    Strongly angle-dependent magnetoresistance in Weyl semimetals with long-range disorder

    Full text link
    The chiral anomaly in Weyl semimetals states that the left- and right-handed Weyl fermions, constituting the low energy description, are not individually conserved, resulting, for example, in a negative magnetoresistance in such materials. Recent experiments see strong indications of such an anomalous resistance response; however, with a response that at strong fields is more sharply peaked for parallel magnetic and electric fields than expected from simple theoretical considerations. Here, we uncover a mechanism, arising from the interplay between the angle-dependent Landau level structure and long-range scalar disorder, that has the same phenomenology. In particular, we ana- lytically show, and numerically confirm, that the internode scattering time decreases exponentially with the angle between the magnetic field and the Weyl node separation in the large field limit, while it is insensitive to this angle at weak magnetic fields. Since, in the simplest approximation, the internode scattering time is proportional to the anomaly-related conductivity, this feature may be related to the experimental observations of a sharply peaked magnetoresistance.Comment: 8 pages, 4 figure

    Quantized Fermi-arc-mediated transport in Weyl semimetal nanowires

    Full text link
    We study longitudinal transport in Weyl semimetal nanowires, both in the absence and in the presence of a magnetic flux threading the nanowires. We identify two qualitatively different regimes of transport with respect to the chemical potential in the nanowires. In the "surface regime", for low doping, most of the conductance occurs through the Fermi-arc surface states, and it rises in steps of one quantum of conductance as a function of the chemical potential; furthermore, with varying flux the conductance changes in steps of one quantum of conductance with characteristic Fabry-P\'erot interference oscillations. In the "bulk-surface regime", for highly-doped samples, the dominant contribution to the conductance is quadratic in the chemical potential, and mostly conditioned by the bulk states; the flux dependence shows clearly that both the surface and the bulk states contribute. The two aforementioned regimes prove that the contribution of the Fermi-arc surface states is salient and, therefore, crucial for understanding transport properties of finite-size Weyl semimetal systems. Last but not least, we demonstrate that both regimes are robust to disorder.Comment: 13 pages, 6 figure

    Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition

    Full text link
    We address the breakdown of the bulk-boundary correspondence observed in non-Hermitian systems, where open and periodic systems can have distinct phase diagrams. The correspondence can be completely restored by considering the Hamiltonian's singular value decomposition instead of its eigendecomposition. This leads to a natural topological description in terms of a flattened singular decomposition. This description is equivalent to the usual approach for Hermitian systems and coincides with a recent proposal for the classification of non-Hermitian systems. We generalize the notion of the entanglement spectrum to non-Hermitian systems, and show that the edge physics is indeed completely captured by the periodic bulk Hamiltonian. We exemplify our approach by considering the chiral non-Hermitian Su-Schrieffer-Heger and Chern insulator models. Our work advocates a different perspective on topological non-Hermitian Hamiltonians, paving the way to a better understanding of their entanglement structure.Comment: 6+5 pages, 8 figure

    Anomalous Nernst and Thermal Hall Effects in Tilted Weyl Semimetals

    Full text link
    We study the anomalous Nernst and thermal Hall effects in a linearized low-energy model of a tilted Weyl semimetal, with two Weyl nodes separated in momentum space. For inversion symmetric tilt, we give analytic expressions in two opposite limits: for a small tilt, corresponding to a type-I Weyl semimetal, the Nernst conductivity is finite and independent of the Fermi level, while for a large tilt, corresponding to a type-II Weyl semimetal, it acquires a contribution depending logarithmically on the Fermi energy. This result is in a sharp contrast to the nontilted case, where the Nernst response is known to be zero in the linear model. The thermal Hall conductivity similarly acquires Fermi surface contributions, which add to the Fermi level independent, zero tilt result, and is suppressed as one over the tilt parameter at half filling in the Type-II phase. In the case of inversion breaking tilt, with the tilting vector of equal modulus in the two Weyl cones, all Fermi surface contributions to both anomalous responses cancel out, resulting in zero Nernst conductivity. We discuss two possible experimental setups, representing open and closed thermoelectric circuits

    Unbounded growth of entanglement in models of many-body localization

    Full text link
    An important and incompletely answered question is whether a closed quantum system of many interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states is studied numerically for a system of interacting spinless fermions in one dimension described by the random-field XXZ Hamiltonian. Interactions induce a dramatic change in the propagation of entanglement and a smaller change in the propagation of particles. For even weak interactions, when the system is thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive behavior but grows without limit in an infinite system: interactions act as a singular perturbation on the localized state with no interactions. The significance for proposed atomic experiments is that local measurements will show a large but nonthermal entropy in the many-body localized state. This entropy develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.Comment: 4 pages, 2 figures, v2. added more dat

    Robust Transport Signatures of Topological Superconductivity in Topological Insulator Nanowires

    Full text link
    Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime where an exactly quantized 2e2/h2e^2/h zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.Comment: 5 pages, 3 figure

    Many-body localization in a disordered quantum Ising chain

    Full text link
    Many-body localization occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. Despite strong evidence for the existence of a many-body localization transition a reliable extraction of the critical disorder strength is difficult due to a large drift with system size in the studied quantities. In this work we explore two entanglement properties that are promising for the study of the manybody localization transition: the variance of the half-chain entanglement entropy of exact eigenstates and the long time change in entanglement after a local quench from an exact eigenstate. We investigate these quantities in a disordered quantum Ising chain and use them to estimate the critical disorder strength and its energy dependence. In addition, we analyze a spin-glass transition at large disorder strength and provide evidence for it being a separate transition. We thereby give numerical support for a recently proposed phase diagram of many-body localization with localization protected quantum order [Huse et al. Phys. Rev. B 88, 014206 (2013)].Comment: 4+ pages + 1.5 pages appendix, 5 figure
    corecore